

Water is (again) remarkable

 $HNO_3(aq) + H_2O(I) \implies NO_3^{-}(aq) + H_3O^{+}(aq)$

Base = Proton Acceptor: $H_2O(I)$

 $NH_3(aq) + H_2O(I) \implies NH_4^+(aq) + OH^-(aq)$

Acid = Proton Donor: $H_2O(I)$

Water is an acid in one case and a base in another

Amphoteric: A species that can behave as either an acid or a base

Reactivity of acids

- It's all about the conjugate base!
- If the CB has available electrons (-) it will hold a proton (+) tightly - strong conjugate base, weak acid (eg acetic acid)
- If the CB has a noble gas configuration, electrons are not available for bonding and the proton is not held tightly - weak conjugate base, strong acid (eg HCI)

An example of equilibrium: Acid base chemistry

- What are acids and bases?
 - "Every day" descriptions
 - Chemical description of acidic and basic solutions by Arrhenius
 - Molecules as acids (proton donors) or bases (proton acceptors)
 Brønsted–Lowry Acid–Base Theory
- How do they work?
 - Conjugate acid-base pairs
 - Strength and weakness
 - Acid base equilibrium reactions: predicting favored direction
- The water equilibrium
 - pH and pOH
 - Calculating the equilibrium constant from pH
- Buffer solutions

	_	_		
Table 17.3 pH and [H+]	Hydrogen [H+]	lon Con	Acidity or Basicity*	
1.0	100	0		Increasing
0.1	10-1	1		Acidity
0.01	10-2	2	Strongly acid	
0.001	10-3	3	pH < 4	
0.0001	10^{-4}	4		
0.0001	10-4	4		
0.00001	10-5	5	Weakly acid	
0.000001	10^{-6}	6	$4 \le pH < 6$	
0.000001	10^{-6}	6	Neutral	
0.0000001	10-7	7	(or near neutral)	
0.00000001	10 ⁻⁸	8	$6 \le pH < 8$	
0.00000001	10 ⁻⁸	8		
0.000000001	10-9	9	Weakly basic	
0.0000000001	10^{-10}	10	$8 \le pH < 10$	
0.0000000001	10^{-10}	10		
0.00000000001	10-11	11	0	
0.000000000001	10^{-12}	12	Strongly basic	Increasing
0.0000000000001	10^{-13}	13	$10 \le pH$	Basicity
0.00000000000001	10^{-14}	14		

2) Determine the relative concentrations of the species

The total concentration of benzoic acid is:

$$[C_6H_5CO_2H] = \frac{4.2g C_6H_5CO_2H}{122g C_6H_5CO_2H} = 0.034 M$$

The concentration of dissociated benzoic acid is:

$$[C_6H_5CO_2^-] = [H^+] = 10^{-pH} = 10^{-2.84} = 1.45 \times 10^{-3} M$$

Less than 5% of the benzoic acid is deprotonated = weak acid

Buffer solutions

- A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base or a weak base and its conjugate acid.
- It has the property that the pH of the solution changes very little when a small amount of acid or base is added to it.
 - Add base: it is neutralized by (reacts with) the acid
 - Add acid: it is neutralized by (reacts with) the base
- Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications.

Example: the H₂PO₄-/HPO₄²⁻
system
$$H_{2}PO_{4}^{-}(aq) \iff H^{+}(aq) + HPO_{4}^{2-}(aq)$$
$$H_{2}^{+}PO_{4}^{-}(aq) \iff H_{2}^{+}PO_{4}^{-2}$$
$$H_{4}^{+}(aq) + HPO_{4}^{2-}(aq) \implies H_{2}^{+}PO_{4}^{-}(aq)$$
Add acid:
$$H^{+}(aq) + HPO_{4}^{2-}(aq) \implies H_{2}PO_{4}^{-}(aq) + H_{2}O(I)$$