

Compiler Design by Md. Ajij

(5th Semester)
1) What is a compiler?

A compiler is a program that translates a source program written in some high-

level programming language (such as Java) into machine code for some

computer architecture (such as the Intel Pentium architecture). The generated

machine code can be later executed many times against different data each

time.

Simply stated, a compiler is a program that reads a program written in one

language-the source language-and translates it into an equivalent program in

another language-the target language. The compiler reports to its user the

presence of errors in the source program

2) Define cross compiler.

Cross Compilers are compilers that execute on one computer and
generate object code that can execute on different platform.

For example a cross compiler that is running on windows pc can produce
object code that run on MAC OS or Android OS.

3) What are the various phases of the compiler? Explain each phase in detail.

Phase 1: Lexical Analysis

Lexical Analysis is the first phase when compiler scans the source code. This

process can be left to right, character by character, and group these characters

into tokens.

Here, the character stream from the source program is grouped in meaningful

sequences by identifying the tokens. It makes the entry of the corresponding

tickets into the symbol table and passes that token to next phase.

The primary functions of this phase are:

 Identify the lexical units in a source code
 Classify lexical units into classes like constants, reserved words, and

enter them in different tables. It will Ignore comments in the source
program

 Identify token which is not a part of the language

Example: x = y + 10

Tokens

X identifier

= Assignment operator

Y identifier

+ Addition operator

10 Number

Phase 2: Syntax Analysis

Syntax analysis is all about discovering structure in code. It determines

whether or not a text follows the expected format. The main aim of this phase

is to make sure that the source code was written by the programmer is correct
or not.

Syntax analysis is based on the rules based on the specific programing

language by constructing the parse tree with the help of tokens. It also
determines the structure of source language and grammar or syntax of the

language.

Here, is a list of tasks performed in this phase:

 Obtain tokens from the lexical analyzer

 Checks if the expression is syntactically correct or not
 Report all syntax errors

 Construct a hierarchical structure which is known as a parse tree

Example

Any identifier/number is an expression

If x is an identifier and y+10 is an expression, then x= y+10 is a statement.

Consider parse tree for the following example

(a+b)*c

In Parse Tree

 Interior node: record with an operator filed and two files for children

 Leaf: records with 2/more fields; one for token and other information
about the token

 Ensure that the components of the program fit together meaningfully
 Gathers type information and checks for type compatibility

 Checks operands are permitted by the source language

Phase 3: Semantic Analysis

Semantic analysis checks the semantic consistency of the code. It uses the
syntax tree of the previous phase along with the symbol table to verify that the

given source code is semantically consistent. It also checks whether the code is
conveying an appropriate meaning.

Semantic Analyzer will check for Type mismatches, incompatible operands, a

function called with improper arguments, an undeclared variable, etc.

Functions of Semantic analyses phase are:

 Helps you to store type information gathered and save it in symbol table

or syntax tree
 Allows you to perform type checking

 In the case of type mismatch, where there are no exact type correction
rules which satisfy the desired operation a semantic error is shown

 Collects type information and checks for type compatibility
 Checks if the source language permits the operands or not

Example

float x = 20.2;

float y = x*30;

In the above code, the semantic analyzer will typecast the integer 30 to float

30.0 before multiplication.

Phase 4: Intermediate Code Generation

Once the semantic analysis phase is over the compiler, generates intermediate

code for the target machine. It represents a program for some abstract
machine.

Intermediate code is between the high-level and machine level language. This
intermediate code needs to be generated in such a manner that makes it easy

to translate it into the target machine code.

Functions on Intermediate Code generation:

 It should be generated from the semantic representation of the source
program

 Holds the values computed during the process of translation
 Helps you to translate the intermediate code into target language

 Allows you to maintain precedence ordering of the source language
 It holds the correct number of operands of the instruction

Example

For example,

total = count + rate * 5

Intermediate code with the help of address code method is:

t1 := int_to_float(5)
t2 := rate * t1

t3 := count + t2
total := t3

Phase 5: Code Optimization

The next phase of is code optimization or Intermediate code. This phase

removes unnecessary code line and arranges the sequence of statements to
speed up the execution of the program without wasting resources. The main

goal of this phase is to improve on the intermediate code to generate a code
that runs faster and occupies less space.

The primary functions of this phase are:

 It helps you to establish a trade-off between execution and compilation
speed

 Improves the running time of the target program
 Generates streamlined code still in intermediate representation

 Removing unreachable code and getting rid of unused variables
 Removing statements which are not altered from the loop

Example:

Consider the following code

a = intofloat(10)
b = c * a

d = e + b
f = d

Can become

b =c * 10.0
f = e+b

Phase 6: Code Generation

Code generation is the last and final phase of a compiler. It gets inputs from

code optimization phases and produces the page code or object code as a
result. The objective of this phase is to allocate storage and generate

relocatable machine code.

It also allocates memory locations for the variable. The instructions in the
intermediate code are converted into machine instructions. This phase coverts
the optimize or intermediate code into the target language.

The target language is the machine code. Therefore, all the memory locations

and registers are also selected and allotted during this phase. The code
generated by this phase is executed to take inputs and generate expected

outputs.

Example:

a = b + 60.0

Would be possibly translated to registers.

MOVF a, R1
MULF #60.0, R2

ADDF R1, R2

Symbol Table Management

A symbol table contains a record for each identifier with fields for the attributes

of the identifier. This component makes it easier for the compiler to search the

identifier record and retrieve it quickly. The symbol table also helps you for the

scope management. The symbol table and error handler interact with all the

phases and symbol table update correspondingly.

Error Handling Routine:

In the compiler design process error may occur in all the below-given phases:

 Lexical analyzer: Wrongly spelled tokens

 Syntax analyzer: Missing parenthesis
 Intermediate code generator: Mismatched operands for an operator

 Code Optimizer: When the statement is not reachable
 Code Generator: Unreachable statements

 Symbol tables: Error of multiple declared identifiers

Most common errors are invalid character sequence in scanning, invalid token
sequences in type, scope error, and parsing in semantic analysis.

The error may be encountered in any of the above phases. After finding errors,
the phase needs to deal with the errors to continue with the compilation

process. These errors need to be reported to the error handler which handles
the error to perform the compilation process. Generally, the errors are

reported in the form of message.

